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Abstract-A theoretical analysis is presented for the phase change process occurring in a cylindrical annulus 
in which rectangular, uniformly spaced axial fins, spanning the annulus, are attached to the inner isothermal 
tube, while the outer tube is kept adiabatic. The model assumes conduction to be the only mode of heat 
transfer. The governing equations are solved by finite-difference methods. The time-wise evolution of the 
interface profile, phase-change fraction and energy stored/discharged and the effect of all the nine pre- 
scribable parameters are presented here. Based on the analysis a working formula 

VF = l.l275(Fo Ste Tf)o,624 (N)“.028 (L)-‘.385 ( W’-0o49 

is suggested for engineering design purposes. 

INTRODUCTION 

LATENT heat thermal energy storage (LHTES) sys- 
tems employing phase-change materials (PCM) suffer 
from certain inherent handicaps. PCMs used in 
LHTES, are in general poor thermal conductors. Dur- 
ing the energy discharge process, PCM freezes on to 
the heat transfer surfaces and acts as a self-insulator. 
The technique of adding crystallising and thickening 
agents to the PCM to alleviate the problems of super- 
cooling and phase segregation, can further sig- 
nificantly reduce heat transfer by lowering the thermal 
conductivity of PCM and inhibiting convective 
motion in liquid PCM. 

Heat transfer in LHTES devices can be enhanced 
by the following techniques : 

(i) Mechanically scraping off the frozen PCM from 
heat transfer surfaces [l] or rotating the PCM 
container at slow speeds to prevent the frozen 
PCM from adhering to the heat transfer surfaces 

1LJ. 
(ii) Using direct contact heat exchangers [3-81. 

(iii) Microencapsulation of PCM [9-121. 
(iv) Using extended surfaces [ 13-211. 

The last mentioned technique forms the topic of 
investigation in the present paper. While there are a 
number of experimental investigations on freez- 
ing/melting of PCM bounded by finned surfaces in 
rectangular geometries [13-l 51 and cylindrical geome- 
tries [l&20], theoretical investigations are very few 
and are available mainly for rectangular geometries 
[13, 14, 21, 221. 

There does not seem to be any theoretical study on 
the transient heat transfer process during the freez- 
ing/melting of PCM with fins in cylindrical geome- 
tries, the lone exception being the simplified model 

presented by Abhat et al. [23]. Outward phase change 
in an axially finned annulus is theoretically inves- 
tigated in this paper. For the sake of clarity, the analy- 
sis and presentation of results are couched in terms of 
freezing but are valid for melting also. 

STATEMENT OF THE PROBLEM 

The PCM is contained in a cylindrical annulus with 
N rectangular fins parallel to the axis of the cylinder 
and evenly distributed around its circumference. The 
PCM-finned tube assembly is initially at a uniform 
temperature T,*, which is different from the phase- 
change temperature Tf of the PCM. The outer cir- 
cumference of the annular space is kept insulated. The 
inner circumference is subjected to a step change in 
temperature and maintained isothermal thereafter at 
T$. If Tz > T,* > T,* melting of the PCM will take 
place and for T$ < Tf’ < T,*, freezing will ensue. The 
phase-change process is sought to be accelerated by 
the addition of fins. 

A schematic of the physical model for a unit cell 
bounded by two adjacent fins and the inner and outer 
cylindrical surfaces is shown in Fig. 1. 

The model assumes one-dimensional conduction 
through the fin and two-dimensional conduction 
through the PCM. All the thermophysical properties 
are assumed to be independent of temperature. Natu- 
ral convection in liquid PCM is ignored. The surfaces 
of the two adjacent fins constituting the boundaries 
for the unit cell are specified by the angle 
4* = k p*(r*) where p * is given by the equation 

B* = n/N- sin- ‘( W*/2r*). (1) 

The problem can be mathematically described by 
the following set of equations. 
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1856 P. V. PADMANABHAN and M. V. KRISHNA MURTHY 

NOMENCLATURE 

AF heat transfer area factor, equation (38) 
AFC, AFR, APRZ coefficients defined in 

equations (23), (22), (17) 
a thermal diffusivity 
C specific heat 
E* normalisation quantity for energy 

components, equation (28) 
El, E2, . , E6 energy density components, 

equations (29t(34) 
ET total energy density, equation (35) 
EM maximum possible energy density, 

equation (36) 
F, FR, FRR coefficients defmed in equations 

(19H21) 
FC fin content defined in equation (37) 
Fo Fourier number, a,+:* 
Ah latent heat of phase change 
L* radial length of the fins 
L dimensionless fin length, L*/rz 
N total number of fins around the 

circumference 
PFo, PR, PRR, PRZ, PZ, PZZ coefficients 

defined in equations (12~( 16), (18) 

P root of Neumann’s transcendental 
equation (41) 

R, RF defined in equations (24), (25) 
r* radial coordinate 
r dimensionless radius, (r* - r@/rz 

Ste Stefan number, f c,( T.z - T$/Ah 
T* temperature 

T dimensionless temperature, 
(T*-T:)/(T:--T;t) 

t time 
VF volume of melt/frozen fraction defined in 

equation (39) 
W* fin thickness 
W dimensionless fin thickness, W*/r$ 

Greek symbols 
cI* half fin angle, sin - ’ ( W*/2r*) 

P* half PCM angle, (n/N-a*) 

rl transformed radial coordinate 
= r/rr for phase 1 of PCM 
= (r - L)/(rf - L) for phase 2 of PCM 

1 thermal conductivity 

P mass density 

:* 

angular coordinate 
dimensionless angular coordinate, 4*/p*. 

Subscripts 
F fin 
Fp fin portion adjoining phase p of PCM 
f melt/freeze front 

P phase p of PCM (1 = inner phase; 
2 = outer phase) 

W inner wall surface. 

Superscript 
* dimensional quantity. 

Governing equation for PCM : -at the insulated boundary 

(24 
87-8, 
~ = 0 at r* = (r$+L*) &* (2d) 

in -/3* <CD* < /?*, p = 1 in rl < r* < rf* 

p = 2 in rf* < r* < (r$+ L*). 
Governing equation for the upper fin : 

aT: 
p = 0 at r* = (rz+L*), -/?* < 4* < /?* 

CW 

a*T* 1 aT&, (a*-tancc*) 
-@?+r*ar* 

-at the inner tube wall surface 

u* 
Tf’ = T$ at r$ -fi* < $I* < /3* (2f) 

1 aT;, 1 sec*c(* 1 aTz =_-+-.Jp 
aF at lF c(* r** a4* o*=8. (2b) T& = T$ at r* = r$ (2d 

p = 1 in rz < r* < rf -at the melt/freeze front 

p=2inr:,<r*<(r$+L*). T: = Tf = T: at r* = r$‘, -/I* < 4* < /3* (2h) 

Boundary conditions : 

-at the fin surface 

Tp* = T$, at $* = k/I*, 

p = 1 in r$ < r* < rr* 

p = 2 in r: < r* < (rz + L*) 

at 

r* = r:, -B* G 4* <B* 

(2c) (+ melting, - freezing). (2i) 



FIG. 1. Physical model and coordinate system. 
at +=l, p=l in O<q,<l 

p = 2 in 0 < q2 < 1. 

Initial conditions : Boundary conditions : 

T& = T$ in ri < r* ,< (rS;+L*) (2j> -at the fin surfaces 

T: = TE in r$ < r* < (rt+L*), T,=T,,at$=+l, p=l inO<v,<l 

-/I* < $* < /3* GW p=2 in O<q,<l (1 lc) 

r: = r$ in -/I* < $* < fi*. (21) -at the insulated periphery 
It is very difficult to obtain closed-form analytical 

solutions for equations (2). Therefore, numerical sol- 
ution is resorted to in this paper. As a first step in this 
direction the above equations are normalised using 
the following quantities : 

T= (T*-T:)/(T,*,-T:) 

r = (r* -r$)/rt 

4 = 4*/B* 

Fo = a,t/r,*2 

L = L*jr$ 

W = W*jr$ 

Ste = ?I c 1 (Tc - Tf)/Ah 

(3) -1 <4< 1 (lle) 

(4) -at the inner tube wall surface 

(5) T,=O at n,=O, -l<$,<l (1 lf) 
(6) 

TF, =0 at ql =O. (1 lg) 
(7) 

-at the melt/freeze front 
(8) 

T,=T,=T,at-1<4,<1, g,=n2=1 (llh) 
(+ freezing, - melting). 

(9) I, aT, 1 dT, 1 
+-- 

ar, $tanu* --_ 

Even after normalisation the equations involve a time- [ 1, atlz (rI--L) a~, rf I[ ’ +ZJ/?*(l+rJ 1 
dependent, moving boundary which is non-concentric 
and needs a complex book-keeping of a time varying 
mesh in the computational scheme. This difficulty is 

x[l+($Bi(:+li))l]=&z (119 
circumvented by transforming the equations to a at q, = q2 = 1, -1<4<1. 
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regular and fixed computational domain by using a 
Landau-type immobilisation parameter [24] defined 
as : 

rlrf for p = 1 

” = 1 (r - L)/(r,- L) for p = 2. (10) 

The value of r~ at the moving interface is always unity. 
The resulting equations are as follows. 

Governing equation for PCM : 

+ r$PZ), + (Y$$PRZ)~ = (&-), (lla) 

p=l inO<n,<l 

Governing equation for the fin : 

(lib) 

(114 
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Initial conditions : 

TF2 = 1 in 0 < q2 < 1 (1 lj) 

T,=l inOdqz<l, -1~4~1 (Ilk) 

rr=O in -1<q5<1 (111) 

where 

ar, 

-pzQG - 

APRZ ar, 
p-.PFo$$, 

RF a$ Ii RF (13) 

( ah 
PRZ = -2PZZqG+ APRZ 

>I 
RF (14) 

PZZ = [l + (4 tan ct*)‘]/(/?*R)’ (15) 

PZ = 4tancr* 
( 

sec*ct* 
2 

+ -tana* 
B* >:’ 

(B*R2) (16) 

APRZ = -24tancc*/(p*R) (17) 

PFo = al/a, (18) 

FRR = l/RF= (19) 

AFR+f@+AFCt$ 
aF aF0 a4 

RF (20) 
(21) 

‘@.C _ 4 1 sec2u* 
i, R= u*fi* 

(22) 

AFR = (CC* -tan cc*)/(Rcc*) (23) 

R= l+rllrf 
{ 

for p = 1 

1 +L+tfZ(r,-L) for p = 2 
(24) 

RF= i l,--Z,) 

for p = 
for p= 

c(* = sin’ (W/2R) 

,*A,*. 

1 

2 
(25) 

(26) 

(27) 

ENERGY ACCOUNT The total energy density is given by 

Since this paper is concerned with LHTES appli- 
cations, evaluation of the energy transferred is as 
important as tracking the moving interface. The 
amount of energy stored/discharged up to any given 
instant can be computed by calculating the enthalpy 
change of the PCM-fin assembly. For comparison 
purposes the energy transfer is normalised using a 

ET= El+E2+E3+E4+E5+E6. (35) 

The charging/discharging of energy continues till 
the entire finned tube_PCM assembly reaches a 
steady-state temperature of T$ (at which time all the 
PCM is in phase 1). Therefore, the steady-state energy 
density is also the maximum possible energy density 

factor E* defined below : 

E* = ~m$*(pc),(T$-T$) 

(+ freezing, -melting). 

(28) 

The resulting dimensionless term can be designated 
as energy density. The various energy density com- 
ponents contributing to the total energy density are 
as follows : 

El =;::(l-Tr) 
2 I 

+I 
X 

s s 
B*r&+qlrr)dvId4 (29) 

$=-I 'l,=o 

B*r4l+rl,rJdv,d4 (30) 

P*rf(l+rlIr,)(T,-T,)d?,d~ 

(31) 

x{l+L+rlz(rf-L)}(l-T2)1d?2d~ (32) 

a*rO +v,rd(l -Tddrl (33) 

N2a, 1, ’ 
E6=;7- 

Fl i 
a*(L-rf) 

I II*=0 

x 11 +~+vdr~-9j(l- Tddrl2 (34) 

where El is the sensible heat transferred in changing 
the temperature of phase 1 of PCM in the region 
rf* > r* > r$ from the initial temperature T,*, to its 
phase-change temperature T:; E2 is the latent heat 
transferred in changing the phase of the PCM in the 
region rf > r* > rl ; E3 is the sensible heat of phase 
1 of PCM in the region r: > r* > rz measured from 
its phase-change temperature T: to the temperature 
TT ; E4 is the sensible heat change in phase 2 of PCM 
in the region (r$+L*) > r* > rt, measured from the 
initial temperature T,, , * . ES is the sensible heat of fin 
adjoining phase 1 of PCM, in the region rf* 2 r* > r$, 

reckoned from the initial temperature Tz ; and E6 is 
the sensible heat of fin adjoining phase 2 of PCM, in 
the region (r$+L*) > r* > r$ with reference to the 
initial temperature T,*. 
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EM given by the equation 

X >I . (36) 

The volume of fin space per unit volume of the 
cylindrical annulus is expressed quantitatively by the 
factor fin content (EC) defined as : 

FC2 WL 

A [(1+L)2-l]’ (37) 

The ratio of heat transfer area of the finned annulus 
to that of the untinned annulus is specified by the area 
factor (AF) 

AF= 1 + ;(L- W/2). (38) 

The volume of PCM that has undergone phase 
change per unit volume of the finned annulus-PCM 
assembly is defined as phase-change fraction VF 
which is evaluated by the following expression 

N I s s I 

VF= 
n[(l+L)Z-ll O--I ‘l,=ll 

rfB * 

x (1 +n ,rr) drl r d$. (39) 

COMPUTATIONAL PROCEDURE 

A starting solution is needed for the finite-difference 
scheme, as phase 1 of the PCM is non-existent at zero 
time. A starting value (at the end of the first time step) 
for the phase front thickness is assumed to be equal 
to that given by Neumann’s solution [25] for phase 
change in a semi-infinite planar body. Then the phase 
front thickness at the first time step is 

rf = 2p(Fo)“’ (40) 

where p is the root of the transcendental equation 

The phase front profile is assumed to be concentric at 
the first time step. The fin equation (11 b) is then solved 
neglecting the PCM temperature gradients in the 4 
direction, to get the fin temperature profile. The PCM 
temperature profile is assumed to be the same as that 
of the fin, at all the 4 planes. This completes the 
starting solution. 

A formal solution of the governing equations is 
then obtained using an adaptation of the Alternating 
Direction Implicit (ADI) method as outlined below. 

Following a quasi-stationary approach, the phase 

front profile at the new time level is obtained by 
explicitly solving equation (1 li). The fin equation 
(11 b) and the PCM equation (1 la) are then solved 
implicitly, in that order, to obtain the temperature 
profiles in the fin and PCM, respectively, at the new 
time level. The mixed derivatives are treated as known 
quantities and evaluated from the values of variables 
at the previous time step in order to retain the tri- 
diagonal nature of the difference equations. Further 
details of the finite-difference scheme can be found 
elsewhere [26]. 

The solution of the problem is stopped at the instant 
the phase front reaches the fin tip, as the space 
domains specified in equations (2) and (11) lose their 
validity beyond this time. This time will hereafter be 
referred to as process time. Beyond the process time, 
the fins exchange heat with only phase 1 of PCM. 
Phase-change process beyond the process time is a 
separate problem by itself with the initial conditions 
being those prevailing at the end of process time. Such 
a solution, beyond the process time is not considered 
in this paper. 

A space step size of A?, = Aq2 = A4 = 0.1 is uni- 
formly used in all the computations. The time step 
size is chosen by trial and error and a range of 
AFo = 0.002 to 0.05 is found to be satisfactory for the 
range of parameters considered in this paper. 

The number of fins is a critical parameter in the 
selection of a suitable time step, with a larger N value 
requiring a smaller step. Too large a time step gives 
rise to wiggles in the interface profile. 

The various energy components are evaluated by 
numerical integration using the trapezoidal rule. 

RESULTS AND DISCUSSION 

As a specific example, the melting/freezing of 
paraffins in a cylindrical annulus with copper fins is 
analysed. Typical properties of these materials are 
listed in Table 1. The following parameters are used 
in the analysis, except where otherwise specified. 

Ste = 0.5, N = 4, al/a2 = 1,/1, = 1 

T, = 0.8, L = 1.5, a,/aF = 8 x 10e4 

w= 0.1, 1,/l, = 4 x 10-4. 

This gives a fin content of 0.036 with a heat transfer 
area factor of 2.846. 

The shape of the moving interface at different times 
is shown in Fig. 2. 

Figure 3 shows the variation of the various energy 
components. It is seen that the latent heat is the major 
contributor (about 70%) to the energy storage 
density. Only 20% is contributed by the sensible heat 
of PCM and the balance by the sensible heat of the 
fin. 

While the components El, E2, E3, E5 all increase 
with time, the sensible heat of the unmolten/unfrozen 
PCM, E4 and that of the fin, E6 initially increase with 
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Table 1. Thermophysical properties 

S. no. Properties Units 
Water [271 n-Eicosane [28] 

Liquid Solid Liquid Solid Copper 1271 

1. Saturation temperature “C 0 36.4 - 

2. Latent heat kJ kg-’ 333 247 
3. Density kg mm3 1000 917 778 856 8300 
4. Thermal conductivity W mm’ K-’ 0.552 2.250 0.150 0.150 372 
5. Specific heat kJ kg-’ Km’ 4.220 2.040 2.010 2.210 0.419 
6. Thermal diffusivity ( x 104 m2 ss’ 0.143 1.2 0.096 0.079 107 

time, reach a peak and then start decreasing. In the 
initial stages the change in temperature of phase 2 is 
dominant and at later times the reduction in the size 
of the unmolten/unfrozen region is dominant. 

The effect of Stefan number on the total energy 
density ETand the phase-change fraction VFis shown 
in Fig. 4. Phase-change fraction VF is lower for 
smaller Stefan numbers indicating that the melt- 
ing/freezing rate is slower. This is due to the fact that 
either the latent heat is large or the driving force 
f (T,*, - T$ is small for low values of Ste. Necessarily 
the phase-change process is slowed down at lower 
values of Ste. 

However, the total energy density shows an upward 
swing for lower values of Ste. Hence for LHTES, low 
Stefan number is desirable. 

The effect of Tr is displayed in Fig. 5. The smaller 

Stez0.5, Tt ~0.8, L =1.5, W 

at/o 2 = 1, a,/aF =Bx~O-~ 

the value of Tf, the smaller is the phase-change fraction 
VF. Smaller Tr means that the initial temperature T$ 

is far different from that of the PCM phase-change 
temperature T:. So the result that the phase-change 
fraction is higher for T, = 1 is only to be expected, 
as no energy is utilised for the parasitic sensible 
heating/cooling of phase 2 of the PCM. 

For times greater than Fo = 1.0, the energy density 
curves are similar to phase-change fraction curves 
with smaller Tf values giving smaller energy densities. 
But for times Fo < 1.0, the converse is noticed. 

It is also seen that the total energy density and 
the phase-change fraction at the instant the fin tip is 
reached by the interface, is nearly the same, within the 
range of Tr values considered. 

Broadly speaking, for LHTES applications, it is 
desirable to have the initial PCM temperature at the 

FIG. 2. Timewise evolution of the frozen/molten layer. 
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0.8 I I Tf I I -4 
VF 

N -4, al/a 2 : 1, a,/aF = 8 x10 ET 

0.7- I. =1.5, X2/X,=1,X,/XF’4Xld4 0.9 

wzo.1 

0.6 - Slez0.5 - VF 

0.5- 

0.4- 

0.3- 

-2 

0 I I I I 
1. 5 2.0 2.: 

_ Fo 

FIG. 5. Effect of Tf on VF and ET. 

saturation value. This however is difficult to achieve 
even in laboratory conditions and more so in the field. 
A value of Tf = 0.8 may be taken as a realistic value 
for LHTES devices. 

The effect of the number of fins N around the 
cylinder is shown in Fig. 6. The phase-change fraction 
VF and the total energy density ET are greater at any 
given time, for a large number of fins. 

Analysis of phase change in an unfinned annulus as 
presented by Sinha and Gupta [29] has been repeated 
for the PCM under consideration and the results are 
plotted in Fig. 6 for comparison purposes. Even a single 
finned annulus is found to be superior to the unfinned 
annulus. It must be remembered that both the fin con- 
tent and heat transfer area factor linearly increase with 
the number of fins, the latter increasing at a faster rate 
for the values of Wand L used in the analysis. 

The phase-change fraction at the end of the process 
is almost constant irrespective of the number of fins used 
within the range of the parametric analysis. But the 
process time decreases with an increase in the number 
of fins. 

The number of fins cannot be increased beyond a 
maximum value of 2n/ W. However, the actual number 
of fins will also have to be decided by the PCM content 
and the phase-change fraction. For example, with 
W = 0.1, the maximum number of fins possible is 62 
which gives a fin content of 0.564 for L = 1.5. This 
reduces the available space for the PCM considerably 
and hence the phase-change fraction cannot exceed a 
value of 0.436 which is well below the value of 0.8 
obtained with N in the range of 1 to 12. 

Figure 7 shows the effect of the fm thickness W on 

the total energy density and the phase-change fraction. 
With an increase in W, the phase-change fraction and 
the total energy density are lower. This is because the 
fin content decreases appreciably, while there is a small 
increase in heat transfer area when thin fins are used. 
Therefore it is desirable to have thin fins for better 
performance in LHTES. 

It is seen in Fig. 8 that decreasing the fin length L (i.e. 

decreasing the outer radius of the annulus) gives very 
high values of VF at any given time, apparently indi- 
cating a marked improvement in the performance. This 
improvement is illusory, as VF by definition is per unit 
volume of the PCM-finned annulus assembly. A true 
picture is given by the plot of VF[(l +L)‘- l] which 
shows that the phase-change volume at any instant is 
virtually unaffected by the choice of L. 

The plot of ET shows that the energy transfer is 
greater for larger fin lengths, at any given time. More 
important is the fact that the value of ET at the end of 
the process, increases enormously with increasing L. 
Hence larger fin lengths are desirable. 

The effect of the ratio of the thermal conductivity of 
PCM to that of fin is seen in Fig. 9. The value of 1,/J, 
has negligible effect on the phase-change fraction. The 
total energy density slightly increases with decreasing 
A,/& indicating that a good conductor is preferable as 
fin material. It can also be interpreted to mean that for 
poor conductivity PCMs, it is advantageous to use fins. 
The process time, final energy density and final phase- 
change fraction are not significantly affected by the 
ratio I ,/A,. 
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The ratio of diffusivity of the PCM to that of the 
fm (~,/a,) has virtually no effect on the phase-change 
fraction as seen in Fig. 10. Higher values of a& give 
marginally greater values of total energy density. It does 
not cause appreciable changes in the process time, final 
energy density and final phase-change fraction. 

Figure 11 shows that the ratio of the thermal con- 
ductivities between the two phases of PCM (1,/Q, while 
significantly affecting the energy density, has virtually 
no effect on phase-change fraction. Larger values of 
&,/A, produce greater energy densities. Total process time 
is not significantly affected by the ratio a*/;(, 

It is seen from Fig. 12 that larger thermal diffusivity 
ratio, a,/~~, produces larger total energy density at any 
given instant. It has negligible effect on the phase-change 
fraction at any given instant and the total process time. 

Though large values of al/u2 and 1,/i, are advan- 
tageous in LHTES devices, the choice of PCM is likely 
to be influenced by other factors like the phase-change 
temperature TT, latent heat Ah, thermal cycling behav- 
iour, etc. 

Sparrow et d’s [18] finned tube experiments with an 
initially saturated PCM showed that the phase-change 
fraction can be estimated by the relation 

VF cc (Fo ste TJ”.5. (42) 

It is seen in the present analysis that VF is a strong 
function of system geometry parameters (N, L and w). 
As already pointed out, the material property ratios 
&/J.,, ~,/a~, n,j& and ur/aF do not affect VFsignificantly. 
A working equation arrived at for the phase-change 
fraction through a multiple regression analysis of nearly 

150 data points obtained from the results of the present 
analysis is given below 

VF = l.l275(Fo Ste Tf)o.624 (N)‘.‘*’ (.L-‘.385 ( ~-“.04g. 

(43) 

The correlation is represented graphically in Fig. 13. 
The standard error of estimate for the above correlation 
is 0.07 and is accurate enough for engineering design 
purposes, in the range of parameters given below : 

ste = 0.1-1.0, 2,/l, = 4x 10-4-3 x 10-3 

Tf = 0.8-1.0, a,/+ = 8 x 10m4-2.5 x lO-3 

w = 0.1-0.5, n,jn, = OS-l.5 

L = O.Sl.5, u,/u* = 0.51.5 

N = l-12. 

CONCLUDING REMARKS 

Analysis of phase change around an axially finned 
annulus indicates that the addition of fins is advan- 
tageous for energy storage applications. 

From the storage point of view the fins should be 
long and thin and should be made of good thermal 
conductors. The PCM should have a large latent heat 
and should be initially near to its saturation temperature 
as far as possible. 

The melt/frozen fraction is a weak function of 1,/I,, 
l,/i,, al/u2 and a& and can be estimated from the 
working equation 

VF = l.l275(Fo Ste Tf)o.624 (N)‘.‘** (t)-‘.385 (WJ’-~~O”‘. 

0.8 I I I I I I I I I I I 
VF 

N=4, Ste=0.5, L=1.5,h?/h,.l,h,/h,=4~16~ 
0.7- 

wzo.1, T, ~0.8, a,/a, ~1 

0.6- - VF -12 

--- ET 

o.s- 

O.L- -8 

0.3- 

c Fo 

FIG. 10. Effect of a,/aF on VF and ET. 
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CHANGEMENT DE PHASE DANS UN ESPACE ANNULAIRE CYLINDRIQUE 
AVEC DES AILETTES AXIALES SUR LE TUBE INTERNE 

Rbum&Une analyse thkorique est prCsentCe pour le changement de phase dans un anneau cylindrique 
dans lequel des ailettes rectangulaires, uniformtment espactes sont attach&es au tube int6rieur isotherme, 
tandis que le tube externe est adiabatique. Le modAle suppose que la conduction est le seul mode de 
transfert. Les Cquations sont rtsolues par des mtthodes aux diff&rences finies. On prtsente l’&volution dans 
le temps du profil de l’interface, de la fraction de phase et du rapport tnergies stock&e/lib0rCe et de l’effet 
des neuf paramitres descriptifs. A partir de I’analyse, on propose une formule pratique pour les ingenieurs : 

VF = I,1275 (Fo Ste T#‘.624 (N)‘,“‘* (L)-‘,‘*’ (FP’y0@‘9. 

PHASENANDERUNGEN IN EINEM ZYLINDRISCHEN RINGSPALT MIT AXIALEN 
RIPPEN AUF DEM INNENROHR 

Zusatnmenfassung-Eine theoretische Untersuchung wird vorgelegt fiir den PhasenlnderungsprozeB in 
einem zylindrischen Ringspalt, wobei rechteckige, gleichfiirmig angebrachte axiale Rippen auf dem inneren 
isothermen Rohr im Ringspalt befestigt sind, wlhrend das AuDenrohr adiabat gehalten wird. Das 
Model1 betrachtet die Warmeleitung als einzigen Wlrmeiibertragungs-Mechanismus. Die Bilanzglei- 
chungen werden mit Differenzenverfahren gel&t. Der zeitliche Verlauf der Phasengrenzen, des Anteils der 
Phasen, der ein-/ausgespeicherten Energie und der EinfluS aller neun bestimmenden Parameter wird 
aufgezeigt. Aus der Untersuchung wird eine Arbeitsgleichung fiir ingenieurml5ige Aus- 
legungsberechnungen vorgeschlagen: 

VF = 1,1275 (Fo Ste Tf)0~624(N)0~028(L)~‘~385( W)mo~049. 

@A30BbIE HPEBPAUEHMR B 4WJIMHAPMYECKOM KOJIbqEBOM KAHAJIE C 
OCEBbIMH PEBPAMH HA BHYTPEHHER TPYEE 

AHHOTPuHn-BbInOJIHeH reopeTuvec&i aHanW3 npouecca (Pa30aoro npespautemir a minminpevecxoh4 
KO,,b"eBOM KaHaJIe,B KOTOpOM npRMOyrOnbHbIe,paBHOMepHO paCnOJIOXCeHHbIe OCeBbIe pe6pa npI4Kpen- 

,,eHbl K BHyTpeHHei? A30TepMAYeCKOiiTpy6erBT0 BpeMRKaKHapyXWaR Tpy6a nOiIAep;rtHlWlaCb anea6a- 
Tflrecxol. B hionenu npennonaraeTcn, ST0 enmicTnemibIM Mexami3MoM TennonepeHoca RanleTcx 
Te~JlO~,,OBOIIHOCTb. O~~AWllOUHe )‘paBH‘ZHHS peUIeHb1 MeTOLIOM KOHeYHbIX pa3HOCTek r@llCTaB- 

netibl paseesalomieca BO 6peMeHa norpamrHble npof&ine, nom @a308oro npeepaueHsn u 

3anacaeMasi/oTnaBaeMaR sHepren,a TaK*e 3@$eKTbl Bcex AeenTa napardeTpoB. IQemoxceHa +opMyna 

NlSIHH~eHepHbIXpaC‘IeTOB. 


